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Modeling a BESS for Energy Arbitrage
Jack Landers, June 9, 2025

Abstract—In this review of battery energy storage systems
(BESS), we will use the Tesla Megapack as a case study for
how we can effectively support the grid with energy arbitrage.
To model a BESS, we will use python to graph the batteries’
properties over time, as they are charged by real power metrics
from past grid data for a 50 MW solar farm in California. This
also requires the development of an energy management system
(EMS), that will use simulated sensor data from the batteries
to effectively handle the state of charge and optimize the power
output of the BESS as the Local Marginal Prices (LMP), change
throughout the day. Such information will help us evaluate
the profitability of the system, so that we can perform a cost
analysis and determine if it would be a worthwhile investment.
We will also dive into details about how a battery functions,
how it is integrated into the grid, and the industrial process
of potentially developing this system. Altogether, the production
of battery energy storage systems is crucial for supporting the
grid with sustainable energy sources, providing power during
environmental disasters, and advancing AI.

I. INTRODUCTION

Battery energy storage systems (BESS) have emerged as
critical components in modern power grids, facilitating the
integration of renewable energy, maintaining grid stability,
and enabling energy arbitrage. As renewable energy sources,
notably solar and wind, become increasingly prevalent, the
need for efficient and reliable storage solutions follows. This
paper provides a comprehensive review of BESS, with a
particular focus on the Tesla Megapack, a prominent utility-
scale energy storage solution. By examining the Megapack
in depth, we demonstrate its effectiveness in supporting grid
demand using energy arbitrage.

To achieve a thorough understanding of these capabilities,
we will utilize Python to simulate and model battery per-
formance over time, visualizing this data with the matplotlib
library. Specifically, we will input real power generation data
from a 50 MW solar farm located in Morgan Hill, California to
model charging behaviors and grid integration scenarios based
on historical grid usage data. Central to this analysis, will be
the development and implementation of a sophisticated Energy
Management System (EMS). This will leverage prior data to
predictively manage the state of charge, thereby optimizing
for profitability as the local marginal prices (LMP) change.

Furthermore, this paper will conduct a detailed economic
assessment of the Tesla Megapack system. By evaluating
the cost-effectiveness and profitability relative to alternative
energy storage solutions, we aim to clarify its viability as
an investment. We will explore critical operational elements,
including battery chemistry, grid integration methodologies,
and the industrial processes involved in the deployment of
such advanced systems. Ultimately, this review underscores
the strategic importance of BESS, particularly systems like

the Tesla Megapack, in strengthening sustainable energy in-
frastructure, providing resilience during environmental disrup-
tions, and supporting advancements in artificial intelligence
with superior energy production.

II. TESLA MEGAPACK

The Tesla Megapack is a state-of-the-art utility-scale BESS,
specifically engineered for high-capacity energy management
and storage. Each Megapack 2XL unit can store up to 3.916
megawatt-hours (MWh) of energy, catering to diverse grid
requirements with configurations tailored to specific applica-
tions [19]. For short-duration needs, the 2-hour configuration
provides an AC power rating of 1.927 MW, achieving a round-
trip efficiency (RTE) of 92%. For applications demanding
longer discharge periods, the 4-hour configuration delivers 979
kW AC, boasting an impressive RTE of 93.7% [21]. This
adaptability underscores its versatility in addressing various
energy demands, from peak shaving to grid stabilization. Tesla
integrates each cell storage module with dc-dc inverters in the
Megapack. The system then uses a dc-ac grid inverter, with an
accessible battery management system, and effective thermal
and safety management systems, so that they can be easily
connected to supply power. This way, energy companies can
continually scale their BESS to meet demand for their specific
use cases [7].

Fig. 1: A diagram shows the different sections of a Tesla
Megapack battery [15]

A. Cells

Central to the Megapack’s performance are lithium iron
phosphate (LFP) cells, chosen specifically for their superior
thermal stability, safety, and longevity in comparison to other
lithium-ion chemistries. LFP technology significantly reduces
risks associated with thermal runaway, enhancing operational
safety and reliability. Additionally, LFP cells sustain high
performance even under rigorous cycling conditions, making
them ideal for frequent charging and discharging cycles typical
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of grid storage applications. Their inherent stability ensures
a longer operational life span, which maximizes investment
returns over the system’s lifecycle [11]. They are more cost-
effective and use abundant, non-toxic materials, aligning with
Tesla’s goals for scalable, sustainable, and economically viable
battery storage systems.

B. Inverter

Energy conversion within the Megapack is efficiently man-
aged by sophisticated bi-directional inverters and integrated
control systems. These components facilitate seamless energy
transfer between the storage system and the electrical grid to
optimize energy dispatch based on demand. These inverters
perform the crucial task of converting direct current (DC) from
the battery modules into alternating current (AC) compatible
with grid infrastructure, and vice versa during charging peri-
ods. This flexibility allows the system to absorb excess energy
from the grid and inject power back during high demand.
Inverters dynamically regulate the charging and discharging
cycles, maintaining voltage and frequency stability on the
grid through real-time measurements and control loops [21].
Advanced control algorithms within these systems also enable
functionalities like frequency regulation, voltage support, re-
active power compensation, and black start capabilities. Such
features enhance grid reliability and support the integration
of renewable energy, which makes the Megapack a vital
component in modern power infrastructure.

C. Battery Management System

The Battery Management System (BMS) within the Mega-
pack plays a crucial role in monitoring, control, and safety
assurance. It provides operators with comprehensive access
to critical system parameters via a customer interface bay,
which houses main AC breakers and real-time communication
interfaces. The BMS continuously tracks cell performance,
temperature, state-of-charge (SoC), and overall system health,
ensuring optimal operational efficiency. This real-time moni-
toring enables owners to identify potential issues early with
predictive models, significantly reducing downtime and en-
hancing reliability as they are more effectively maintained.

D. Thermal Management

Functional thermal management is integral to maintaining
the Megapack’s optimal performance. The system employs a
sophisticated closed-loop liquid cooling mechanism, by circu-
lating a carefully formulated 50/50 mixture of ethylene glycol
and water, through a vapor compression based refrigeration
cycle. This approach efficiently regulates cell temperatures,
preventing overheating during intense operational periods and
ensuring consistent performance under varying climate condi-
tions [6]. Stable temperature maintenance significantly extends
battery life and preserves the system, making thermal manage-
ment an essential component of the Megapack’s design.

E. Safety System

Tesla integrate passive thermal protection to ensure the
risk of thermal runaway propagation is minimized, signifi-
cantly enhancing the overall safety of Megapack operation.
In addition, deflagration venting features, comprising pressure-
sensitive vents and spark arrestors, manage and safely dissipate
gases during abnormal operating conditions. This mitigates the
risks of explosions. The innovative fire suppression strategy
further reinforces safety; the system is engineered to ”self-
consume” in the unlikely event of a fire, allowing it to extin-
guish naturally without external intervention [19]. This method
substantially reduces any collateral damage from water-based
fire suppression techniques, protecting both the environment
and adjacent infrastructure.

III. SIMULATION METHODOLOGY

A. Solar-Generation Input

Photovoltaic data for a 50 MW solar farm in Morgan
Hill (37.13° N, 121.65° W) was reconstructed from the
NREL Solar Power Data for Integration and Grid Applica-
tions (NSRDB), which provides satellite-derived irradiance
with typical uncertainty of ±3% when compared to ground
pyranometer networks [12]. The data was downsampled to 15-
minute resolution to match that of the LMP data so that there
is no precision lost to interpolation. This approach offers a
physically consistent representation of weather variability.

Fig. 2: The output from a 50MW solar farm in Morgan Hill,
California on June 6 [5]

B. Battery-Energy-Storage System Model

The BESS is represented by a power–energy formulation
with state-of-charge dynamics [1]:

SoCt+1 = SoCt + ηP ch
t ∆t− P dis

t ∆t

η
,

such that

0 ≤ SoC ≤ 1, P dis ≤ Pmax

Round-trip AC-to-AC efficiency for the Tesla Megapack 2 XL
is specified as 92% for full-depth cycles and is implemented
as η = 0.92. For our Numpy calculations, energy and power
per pack are defined as 3.196 and 1.927, respectively [19].
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C. Market-Pricing Signal

Locational marginal prices (LMPs) for the CAISO real-time
market activities were retrieved from the OASIS API for 6
June 2025, the day coincident with the solar trace. Historical
LMPs for 30 May–5 June were averaged into an hourly profile
to form a day-ahead price forecast used by the predictive
controller. The OASIS interface provides five-minute price
granularity, but we calculate aggregation hourly, remaining
consistent with typical utility-scale bidding requirements.

Fig. 3: The CAISO net demand for energy on June 6, which is
almost directly proportional to the value of energy as shown
by the LPM, and is vaguely inversely proportional to solar
generation

D. Arbitrage-Optimization Strategy

Two revenue-maximizing solutions were benchmarked:
• Static Threshold Model. Energy is charged whenever

price < θb and discharged when price > θs. Optimal
thresholds were estimated as θb = 30% and θs = 70%
of the maximum demand from the prior week’s average
LMP [16].

• Predictive Look-Ahead. A receding-horizon MILP uses
the one-week price forecast to schedule dispatch while
respecting SoC and converter limits. This mirrors adap-
tive predictive strategies that improve arbitrage profit by
10–18% over static rules for LFP batteries [1].

Revenue is computed as the sum of discharged energy times
market price, minus the cost of energy purchased at charging
times, net of round-trip losses.

E. Model Limitations

Several simplifying assumptions constrain the external va-
lidity of this study.

1) Only a single clear-sky June day is simulated; seasonal
variation in both PV output and LMP volatility can
significantly alter arbitrage margins.

2) Morgan Hill prices are used as a proxy for all CAISO
nodes; locational congestion can cause ±30% spreads[5].

3) Capital expenses (CapEx) and operational expenses
(OpEx) are treated as fixed scalars rather than time-
indexed cash flows, and soft costs such as augmentation
or regulation analyses are excluded.

4) Discharge-rate limits (two-hour rating) and calendar
degradation are ignored; empirical studies report capac-
ity fade of approximately 1.77% per year for grid-scale
LFP systems, which would depress long-term net present
value [8].

IV. DISPATCH MODELS

A. Static Threshold Model

The threshold strategy to charge when price < θb and
discharge when price > θs delivered the weakest performance
in this study, capturing 10-15% less revenue achieved by the
more sophisticated controller. For our simulated day, discharge
occurred before the price was at its highest value. This is be-
cause threshold rules also ignore intra-hour volatility; our 15-
min solar-linked price swings occasionally opened profitable
five-minute windows that the hourly threshold missed. Prior
work at NREL found similar under-utilisation, with “price-
signal” leaving 20–35% of arbitrage margin on the table for
behind-the-meter PV storage sites[14]. The takeaway is that
static band strategies are easy to implement but ill-suited
to markets where renewable penetration drives abrupt, non-
stationary price shifts. A limitation for our model was that at
large scale, the threshold would rise above the charge limit θb
before the batteries were full, and then they would discharge,
realizing only some of the battery’s value. This leaves capacity
underutilized for systems exceeding 115MW, and we even saw
revenue decrease as a result of the more efficient discharging
that meant the system would offload all of its charge before
pricing had continued to increase beyond the threshold.

(a) Estimated increase in capital expense for scaling the system

(b) Predicted revenue from energy arbitrage as capacity in-
creases, following a static threshold model

Fig. 4: Financial comparison for a battery energy storage
system supporting a 50MW solar farm
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B. Predictive Look-Ahead Model
Embedding a one-week rolling forecast of locational

marginal price (LMP) into a receding-horizon optimizer ele-
vated daily profit by as much as $3500 relative to the threshold
rule. The forecast was generated by averaging CAISO LMP
data for the previous seven days at each hour-ending, a simple
alternative for the type of short-range statistical models used
in commercial trading desks [4]. Academic studies show
that even imperfect forecasts can unlock substantial gains:
deep-reinforcement learning augmented with multi-horizon
predictors increased arbitrage reward by 60% in the Alberta
market [2]. The advantage lies in the look-ahead dispatch
strategy, which shifts charging to the early morning shoulder
period and distributes discharge across several peak-price
hours, thereby minimizing saturation risk. As a result, the
batteries could reach a full state of charge below a capacity
of 142MW. This coincided closely with the optimal OpEx
payback period as well, but still the BESS could not be
profitable within its lifetime if supporting a solar farm of this
cost, as is evident in Figure 7, where we see the lifespan of all
the BESS sizes tested would be too short to cover expenses.

Fig. 5: LMP compared with the state of charge, solar output,
and cumulative profit, for a 70 megapack, 142 MW BESS,
performing energy arbitrage with power supplied from a 50
MW solar plant, following a predictive look-ahead model

C. Grid-Price-Follow Model
A third variant treated the BESS as a merchant trader

detached from the solar plant, buying power directly from the
grid whenever instantaneous price dipped as assumed by the
predictive model, and selling during the evening ramp. This
strategy out-earned both solar-coupled scenarios. The empir-
ical rationale is the growing frequency of negative midday
prices in CAISO: 1 180 sub-zero hours occurred in 2024,
almost double the 2023 figure, with a median negative price
of –$17 MWh [10]. Our grid-only model exploits discount
energy without bearing the heavy CapEx of a solar farm.
Crucially, it also sidesteps curtailment penalties that plague
hybrid solar-plus-storage plants in saturated areas. The result
supports CAISO’s 2024 market-monitor finding that stand-
alone batteries captured higher gross margins ($103 kW-yr)

than hybrid resources in 2023 [20]. While the revenue is
less than that of the coupled models, the profit is realized
in the affordability of the system which we estimated to be
$1.25 million per Megapack 2XL CapEx, and $1 million per
year OpEx. On top of this, these prices can be more easily
justified as returns take a more linear pattern. Even still, this
is hardly profitable in our long-term pricing analysis, and such
a flaw is rooted in the wasted utilization of our battery, when
exclusively arbitraging.

Fig. 6: LMP compared with the state of charge and cumulative
profit, for a 70 megapack, 142 MW BESS, performing energy
arbitrage with power purchased from the grid

V. LONG-TERM PRICING ANALYSIS

A. Capital Expenditure

Solar CapEx dominates this projects expenses: a 50 MW
PV field in Norther California is still $35-50M even after
IRA incentives, whereas a 100 MWh Megapack array can now
be procured for $26M hardware-only at $266 per kWh [17].
NREL’s 2024 ATB projects battery CapEx continuing to fall
2.9% each year under the “Moderate” scenario, while utility-
scale PV declines only 1.4% per year [18]. Net-present-value
analysis using a 7% WACC shows that battery arbitrage
revenue pays back 58–72% of its own cost over a 20-year hori-
zon, but covers <15% of the PV plant’s upfront spend [13].
Therefore, unless wholesale prices or capacity adders rise, the
solar asset remains the economic bottleneck, validating our
finding that grid-purchased energy is cheaper to arbitrage than
self-generated solar.

B. Operational Expenses

Utility-scale operation and maintenance (O&M) for LFP
storage averages $6–9 per kW every year for routine mainte-
nance and software; however, site-specific costs such as prop-
erty tax (1% assessed value in California), fire-suppression
compliance, and augmentation reserve can double steady-
state OpEx [3]. Financing structure also matters: debt-service
coverage can cascade O&M shortfalls into covenant breaches,
where agreements made based on risk analysis cannot be
upheld. Every $1 kW-yr unanticipated cost lengthens payback
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by around half a year at just a 10 MW scale. Morgan-Lewis’s
2024 procurement survey notes that supply-chain volatility
has driven transformer lead-time to 18 months and ballooned
bid bonds, costs that are rarely captured in simple financial
agreements. Because our simulation imposed a flat $30 kWh-
yr OpEx, sensitivity analysis shows a ±25% uncertainty band
in rate of returns (IRR), overwhelming the ±5% variance from
forecast error found in price models [9].

Fig. 7: An approximation for how long it would take to cover
the expenses of the system from arbitrage revenue (excluding
interest accrued,) supporting a 50 MW solar farm.

C. Degradation and Lifetime Extension

The fading of modern LFP packs is modest at approximately
1.5% per year at 25 °C and one full-cycle day, but this can
accumulate to a 30% capacity loss in 20 years. Tesla warranties
Megapack 2 XL for 70% capacity at year 20, implying that
arbitrage-only revenue would fall by an estimated 33% in the
outer years unless packs are augmented. Stretching lifetime
through partial augmentation (adding 15% fresh modules every
seven years) keeps effective capacity above 90% and increases
discounted cash flow by 18%, more than offsetting augmen-
tation capex under current trends. This finding reinforces
industry guidance that degradation management is imperative
for long-term profitability, not just upfront price [3].

VI. CONCLUSION

Our modeling underscores a counter-intuitive reality: pair-
ing a large BESS with a dedicated solar plant in a high-
penetration region like CAISO is less lucrative than operating
that same storage asset as a merchant trader of grid energy.
Negative midday prices driven by solar oversupply decrease
the marginal value of on-site photovoltaic generation, while
stand-alone batteries thrive on that very volatility. Yet even
energy arbitrage alone can clear the rate of expenses once real-
istic operational expenses, network upgrades, and degradation
are taken into account. The economic pathway that consis-
tently crosses the bankability threshold is value-stacking: com-
bining energy-only arbitrage with ancillary-service revenues
like demand response, capacity payments, and distribution-
level services. Market analyses show that storage portfolios
earning >55% of gross margin from non-arbitrage products

exhibit paybacks 3–5 years shorter than arbitrage-exclusive
assets [9].

In summary, battery arbitrage scales linearly in theory but
non-linearly in practice due to grid saturation, soft-cost es-
calation, and price feedback. Predictive dispatch significantly
improves utilization, but cannot by itself overcome solar-
driven prices. Robust project economics therefore rely on
diversified revenue streams and proactively managing battery
lifespan, rather than on arbitrage profits alone.

APPENDIX A
CODE AVAILABILITY

The source code for the model and simulation used in this
work is available at:

https://github.com/JacktheLander/Lab-
Projects/tree/main/Battery-Energy-Storage-Systems
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